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Abstract

Sung R. Choi, Dongming Zhu, and Robert A. Miller
NASA Glenn Research Center, Cleveland, OH 44135

Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-
sprayed ZrO2-8wt% Y2O3 were determined at ambient and elevated temperatures in an attempt to establish 
a database for design.  Strength, in conjunction with deformation (stress-strain behavior), was evaluated in 
tension (uniaxial and trans-thickness), compression, and uniaxial and biaxial flexure; fracture toughness was 
determined in various load conditions including mode I, mode II, and mixed modes I and II; fatigue or slow 
crack growth behavior was estimated in cyclic tension and dynamic flexure loading.  Effect of sintering was 
quantified through approaches using strength, fracture toughness and modulus (constitutive relations) 
measurements.  Standardization issues on test methodology also was presented with a special regard to 
material’s unique constitutive relations.  
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Contents

• Thermal Barrier coatings (TBCs), ZrO2-8 wt% Y2O3 –
important coating materials due to low thermal 
conductivity, high thermal expansivity, and unique 
microstructure 

• Somewhat anisotropic nature of porosity, microcracks and 
splat structure - a challenge in routine mechanical testing 
and data interpretation

• Mechanical testing for TBCs performed to characterize 
strength, fracture toughness, fatigue, and deformation, and 
also to establish database

• Results of mechanical testing presented and discussed, and 
related issues discussed

I. Backgrounds
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• ZrO2-8 wt% Y2O3 powder with an average particle size of 60 µm
• Plasma sprayed on a steel or graphite substrate 
• SULZER-METCO ATC-1 plasma coating system with a 6-axes industrial 

robot used
• Free standing TBC billets fabricated
• Test specimens machined from billets with appropriate configurations
• Typical billets:

Spray direction (S.D)

Billet

140 mm

90 mm

6 mm
Test specimens
to be cut

S.D

Test Specimen

II. Material Processing

Unique Microstructure of TBCs

‘side’ view fracture surface

polished surface

• Layered, porous, microcracked,
and splat (platelet) structure

Spray direction

NASA/TM—2003-212516 3



III.  Strength Testing

Types of Testing/Test Specimens/Orientations

Spray direction (S.D)

Billet

140 mm

90 mm

6 mm
Test specimens
to be cut

Trans-thickness
tension

Uniaxial
compression

Uniaxial flexure
(four-point)

Biaxial flexure
(ring-on-ring)

Uniaxial
tension

indicates spray direction

Test Matrix (strength)

P1025mm x 3mm (t)
[11/22 mm rings]

Biaxial flexure
(ring-on-ring)

P30 3mm x 4mm x 25mm
[10/20 mm spans]

Uniaxial flexure
(four-point)

P1010mm x 5mmφφφφUniaxial 
compression

N1015 mm x 3 mm (t)
(diameter x thick.)

Trans-thickness
Tension

P1015mm x 5mmφφφφUniaxial tension

Direction of 
fracture*

No. of test 
specimens

Specimen geometryType of tests

* indicates the direction of fracture w.r.t plasma-spray direction.
Test temperature: ambient temperature in air.

Trans-thickness
tension

Uniaxial
compression

Uniaxial flexure
(four-pt.)

Biaxial flexure
(ring-on-ring)

Uniaxial
tension

indicates spray direction
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Experimental Results (strength)

40(4)

33(7)

300(77)

11(1)

15(1)

Average
strength 
(MPa)#

12

6

4

13

-

Weibull 
modulus

P

P

P

N

P

Direction*

10

30 

10

10

3

No. of test 
specimens

valid

Biaxial flexure
(ring-on-ring)

Uniaxial flexure
(four-point)

Uniaxial 
compression

Trans-thickness
Tension

Uniaxial tension

Type of tests

* indicates fracture direction w.r.t plasma-spray direction:
N: normal; P: parallel

# represents ±1.0 standard deviation

Trans-thickness
tension

Uniaxial
compression

Uniaxial flexure
(four-pt.)

Biaxial flexure
(ring-on-ring)

Uniaxial
tension

A basic assumption in strength calculation: a continuum mechanics
(isotropic and linear-elastic)

σσσσf = 10-15 MPa in tension
= 30-40 MPa in flexure
= 300 MPa in compression Choi, Zhu, and Miller (‘98,’99,’00,’01)

indicates spray direction

Experimental Results (strength) 

Strength vs Type of Tests

ST
R

EN
G

TH
, σσ σσ

f [
M

Pa
]

1

10

100

ZrO2-8wt% Y2O3 TBCs
(RT strengths)

(10)
(30)

(3)

Tension Trans-thick
tension

Uniaxial
flex (4-pt)

Biaxial
flex

Compression

(10)

(10)

500

σf = 10-15 MPa in tension
= 30-40 MPa in flexure
= 300 MPa in compression

Trans-thickness
tension

Uniaxial
compression

Uniaxial flexure
(four-pt.)

Biaxial flexure
(ring-on-ring)

Uniaxial
tension

The numbers indicates the number of specimens tested valid 

indicates spray direction

NASA/TM—2003-212516 5



Experimental Results (strength)

• Weibull moduli of m=5-15, a typical range for many commercial
or in-house (dense) monolithic ceramics

Weibull Strength Distributions

Trans-thickness
tension

Uniaxial
compression

Uniaxial flexure
(four-pt.)

Biaxial flexure
(ring-on-ring)

Uniaxial
tension

STRENGTH, ln [σσσσf ] ln (MPa)
1 2 3 4 5 6 7

ln
 ln

 [1
/(1

-F
)]

-5

-4

-3

-2

-1

0

1

2

flexure

4-pt

Trans-thick. CompressionBiaxial

flexure

m=13 m=12
m=4

2005010 20 [MPa]

m=6

5 30 70 500100

tension

Choi, Zhu, and Miller (‘98,’99,’00,’01)

indicates spray direction

Experimental Results (strength)

• Flexure strength – less influence by vintage, indicating
consistency in plasma-spray processing over the years 

Flexure Strength vs Vintage

VINATGE

FL
EX

U
R

E
 S

T
R

E
N

G
TH

, σσ σσ
f [

M
Pa

]

0

20

40

60

80

'97 '98 '02

Flexure beam specimens
(3x4x25mm; 10/20 mm spans)

Average=33 MPa

(5)

(20)

(5)

ZrO2-8wt% Y2O3 TBCs
(RT strengths)

The numbers indicates the number of specimens tested valid Choi, Zhu, and Miller (‘98,’99,’03)

indicates spray direction
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Strength vs. Effective Area – Size Effect

Strength-Effective Area (Weibull PIA model)

EFFECTIVE AREA, A
eff 

[mm2]

10 100 1000

ST
R

E
N

G
T

H
, σσ σσ

f [M
Pa

]

5
6
7
8
9

20

30

40
50
60
70
80

10
uniaxial
tension

uniaxial
flexure

trans-thick.
tension

biaxial
flexure

For typical dense
ceramics (m=10)

• No reasonable agreement in size effect between data and Weibull
analysis (e.g., PIA); inconsistency in flaw populations (?)

Fractography (strength)

• Very difficult to locate fracture origins and to analyze their nature

Uniaxial tension Trans-thickness tension

Top view of biaxial
Flexure specimen

Fracture surfaceUniaxial flexure

Uniaxial compression

Biaxial flexure

Choi, Zhu, and Miller (‘98,’99,’00,’01)
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Fractography – A Great Challenge

Toughened Si3N4ZrO2-8wt% Y2O3

Fracture mirror size (rm):  
• TBCs - 3-40 mm (estimated)
• Dense ceramics – 50-500 µµµµm 

Four-point flexure

ZrO2-10 mol% Y2O3

σσσσf rm
1/2=A

• Big mirror size & porous/microcracked nature of TBCs
→→→→ An enormous challenge in fractogrphy

TBCs Dense Ceramics

?

Choi, Zhu, and Miller (’00,’01)
Choi (’02); Choi and Narottam (’02)

IV. Fracture Toughness Testing
(Mode I, Mode II and Mixed Mode)

Spray direction (S.D)

140 mm

90 mm

6 mm
Test specimens
to be cut

S.D

KIIc & Mixed-Mode

KIc

Types of  Testing/Test Specimens/Orientations

Billet
Test specimens

(4mm x 3 mm x 25-50 mm)

4 mm

NASA/TM—2003-212516 8



Experimental (fracture toughness)
(Mode I, Mode II and Mixed Mode)

S.D

KIIc & Mixed-Mode
-asymmetric flexure-

KIc

Types & Procedures
•Sharp precracks generated

- Single edge v-notched beam (SEVNB) method:
Saw-notched → a sharp V-notch generated 
with a razor blade with diamond paste, a/W≈0.5

•Test fixture configurations
- A/B=10/5 (typical); s=0-3.6 mm in mixed mode
- 10/20 or 20/40 mm spans in KIc

•Test temperatures
25 and 1316 oC in air

•Number of test specimens: typically ≥4     

P

B A

BA

Shear,V

Moment, M

SW

b

A typical, sharp SEVNB
precrack (root radius ≤≤≤≤30 µµµµm) 

Experimental Results (fracture toughness)
• Mode I, Mode II, and Mixed Mode (25 and 1316 oC)

• KIc > KIIc → KIIc/KIc=0.64 & 0.66 (at 25 & 1316 oC)
• KIc and KIIc at 25 oC ≥ KIC and KIIc at 1316 oC
• Elliptical relation between KI and KII
• Test spans independent

a KI [MPam1/2]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

K
II

 [M
Pa

m
1/

2 ] 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

RT;SPANS 10/5 mm 
RT; SPANS 12/6 mm
RT; SPANS 5/2.5 mm
1316oC; SPAN 10/5 mm

ASYMMETRIC; TBC

0.65(0.04)0.98(0.13)4 each1316

0.73(0.10)1.15(0.07)4 in KIc

9 in KIIc

25

KIIc

(MPa√m)
KIc

(MPa√m)
No. of 

specimens 
used

Test
Temp(oC)

Choi, Zhu, and Miller (’03)
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Experimental Results (fracture toughness)

• Fracture Toughness vs. Temperature

a TEMPERATURE [oC]

0 200 400 600 800 1000 1200 1400 1600FR
A

C
TU

R
E 

T
O

U
G

H
N

E
SS

, K
Ic

 [M
Pa

 m
1/

2 ]

0

1

2

3

Prevoius study 
Current study

SEVNB method

Average KIc

Average KIIc

• Temperature insensitive in KIc and KIIc
→→→→ KIc≈≈≈≈1 and KIIc≈≈≈≈ 0.65 MPa√√√√m

• KIIc /KIC ≈≈≈≈ 0.65
Choi, Zhu, and Miller (‘98,’03)

Experimental Results (fracture toughness)

• Fracture Toughness (RT) vs. Vintage

a
VINATGE

FR
A

C
T

U
R

E
 T

O
U

G
H

N
ES

S,
 

K
Ic

 [M
Pa

 m
1/

2 ]

0

1

2

3

'97 '98 '02

      SEVNB
(3x4x45mm; 20/40 spans)

Average =1 MPam1/2

(5)
(5) (4)

ZrO2-8wt% Y2O3 TBCs

• Fracture toughness (KIc) – less influence by vintage (similar to
strength), indicating consistency in plasma-spray processing
over the years

Choi, Zhu, and Miller (‘98,’03)
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Experimental Results (fracture toughness)

Fracture Toughness vs. Orientation

• No significant difference in KIc-- Little directionality effect on KIc

KI

KI

S.D S.D

DCB specimens SEVNB specimens

DCB
(Double Cantilever Beam)

1.04±±±±0.05Normal to plasma 
spray direction

SEVNB
(regular method)1.15±±±±0.07Parallel to plasma 

spray direction

MethodFracture Toughness
KIC (MPa√m)

Direction of crack

Choi, Zhu, and Miller (‘98,’03)

V. Fatigue/Slow Crack Growth

Spray direction (S.D)

140 mm

90 mm

6 mm Test specimens
to be cut

Flexure 
(3x4x25mm)

Billet

3 mm

Test Specimens/Orientations

Uniaxial tension
(15mm x 5mmφφφφ)

S.D

S.D

Test specimens

NASA/TM—2003-212516 11



Experimental (fatigue)

Test Types and Conditions
• Dynamic fatigue (ASTM C1425)

800 oC in air; 3 test rates in flexure
• Tensile cyclic fatigue

RT in air; sinusoidal; R= 0.1; f=10 Hz

•
•• •

log (test rate)

lo
g 

(s
tr

en
gt

h)

••
•

•

log (life)

lo
g 

(s
tr

es
s)

sinusoidal
loading

Dynamic fatigue Tensile cyclic fatigue

v=A[KI]n

Experimental Results (fatigue/SCG)
Dynamic fatigue Tensile cyclic fatigue

STRESS RATE,    [MPa/s]
10-5 10-4 10-3 10-2 10-1 100 101 102 103 104

FR
A

C
TU

R
E

 S
TR

ES
S,

 σσ σσ
f [

M
Pa

]

20

30

40
50
60
70
80
90

10

100
ZrO2-8 wt %Y2O3

800oC in flexure

σ

n>100

RT

TIME TO FAILURE, tf [s]
10-2 10-1 100 101 102 103 104 105 106 107 108M

A
X

 A
PP

LI
ED

 S
TR

ES
S,

 σσ σσ
m

ax
 [M

Pa
]

5

6

7
8
9

20

10

TBC CYCLIC FATIGUE
TENSION/RT AIR(10Hz;R=0.1)

n>100

• Slow crack growth (SCG) parameter n:
n > 100 in both dynamic and tensile cyclic fatigue –

Little susceptibility to SCG (fatigue) 

v=A[KI]n

Choi, Zhu, and Miller (‘98,’99,’01)
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VI. Deformation (Stress-Strain) Behavior

5 Specimen/Loading Conditions Considered

Trans-thickness
tension

Uniaxial
compression

Uniaxial flexure
(four-pt.)

Biaxial flexure
(ring-on-ring)

Uniaxial
tension

 
 

 

Loading 
dome

Test 
specimen

Strain 
gage 

Lower 
platen

Test Setup (strain gaging)

indicates spray direction

Experimental Results (deformation)
Typical Load-Strain Curves

Lo
ad

 [N
]

300
1 40 250 3600

1000Strain [??]

TENSION

FLEXURE

COMPRESSION

• Non-linearity with hysteresis but elastic
-desirable in TBCs but difficulty in analysis

• Independent of the number of cycles and
test rate (not-viscoelastic)

Strain [µεµεµεµε]           

Strain [µεµεµεµε]           

Strain [µεµεµεµε]           

Lo
ad

 [N
]

Lo
ad

 [N
]

Lo
ad

 [N
]

Choi, Zhu, and Miller (’00,’01)
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Experimental Results (deformation)
Four-Point Flexure

• Different response of strain in compression and tension
• A possible neutral axis shift due to different elastic modulus
• Flexure stress calculation – complex

L
oa

d 
[N

]

Strain [µεµεµεµε]

Compression Tension

Choi, Zhu, and Miller (‘’01)

Experimental Results (deformation)

Response of Output Wave Form to Cyclic Compression Loading

The output wave form - distorted from the input triangular wave form

Triangular
cyclic loading

Time [s]     

St
ra

in
 [ µ

εµε µεµε
]

Choi, Zhu, and Miller (’01)

NASA/TM—2003-212516 14



Deformation (Stress-Strain) Behavior

What is the cause of nonlinearity and hysteresis?

Major reason – ‘loosely’ connected open structure due to pores and microcracks
- Internal friction and densification
- Still overall elastic behavior

0

200

400

600

800

1000

0 500 1000 1500 2000 2500

Strain (microstrain)

Lo
ad

 (N
)

Eldridge, Morscher, and Choi (’02)

Deformation (Stress-Strain) Behavior

‘Loosely-Connected Open’ Structure – Poisson’s Response

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000 2500 3000
Strain (microstrain)

Lo
ad

 (N
)

ε1

ε2

νννν=|εεεε2/εεεε1|

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000
Strain (microstrain)

Lo
ad

 (N
)

Exhibits no or little change
in lateral strain: Poisson’s 
ratio not well defined

Exhibits a linearly 
increasing lateral strain: 
Poisson’s ratio well defined

εεεε1

εεεε1
εεεε2

εεεε2

Lo
ad

 [N
]

Strain [µεµεµεµε]

Lo
ad

 [N
]

Strain [µεµεµεµε]

Open, loose structure Dense structure

TBCs

NASA/TM—2003-212516 15
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Experimental Results (deformation)

Sandstone – Another Example of Open Structure

Open, loose structure: non-linearity with hysteresis
-- Similarity to TBCs

sandstone

0

100

200

300

400

500

600

700

800

900

1000

0 200 400 600 800 1000 1200

microstrain

Lo
ad

 (N
)

VII. Sintering – A Changer of  Structure

Sintering conditions:
• Temperature/environment: 1316 oC/air
• Annealing time: 0, 5, 20, 100, and 500 h
• Determine as a function of anneal time:

- Elastic modulus
- Fracture toughness (KIc)
- Flexure strength
- Thermal conductivity

Elastic modulus Flex strength Fracture toughness

NASA/TM—2003-212516 16



Experimental Results (sintering)
Elastic Modulus

• Slope (elastic modulus) increases with anneal time
• Linearity increases with anneal time
• Hysteresis decreases with anneal time

0

100

200

300

400

500

600

700

800

900

1000

0 500 1000 1500 2000
Strain (microstrain)

Lo
ad

 (N
)

100 hr500 hr 20 hr 5 hr As sprayed

Implies a change of microstructure
from ‘loosely’ connected to ‘closely’ connected

Strain [µεµεµεµε]         

Lo
ad

 [N
]

Compression
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0 500 1000 1500 2000 2500 3000
Strain (microstrain)
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 (N
)

ε1

ε2

νννν=|εεεε1/εεεε2|
0
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0 200 400 600 800 1000
Strain (microstrain)
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ad

 (N
)

εεεε1

εεεε1
εεεε2

εεεε2

Lo
ad

 [N
]

Strain [µεµεµεµε]

Lo
ad

 [N
]

Strain [µεµεµεµε]

TBCs

Experimental Results (sintering)

Well-Developed Poisson’s (Lateral Strain) Response 

500 h annealing

Open structure →→→→ More closely-connected structure

NASA/TM—2003-212516 17
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Experimental Results (sintering) 

• As-sprayed - Large amounts of microcracks and pores with a unique
platelet (splat) structure presented

• 100 h annealing - Increased grain growth at longer annealing time

As-sprayed 100 h annealed

Microstructure

Properties change exponentially with sintering time

• Summary on elastic modulus, flexure strength, fracture 
toughness and thermal conductivity

Elastic modulus

Thermal conductivity

ANNEALING TIME, t [h]

0 100 200 300 400 500 600FR
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S,
 K
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 [M
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1/
2 ]

0.0
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1.0

1.5
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3.0

SEVNB Secimens
Annealed at 1316oC in air

ANNEALING TIME, t [h]
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ANNEALING TIME, t [h]
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Annealed at 1316oC in air

Flexure strength

Elastic modulus

Fracture toughness
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, W
/m
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Time, hours

Experimental Results (sintering)

Choi, Zhu, and Miller (‘03)
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Standardization Issues

• The most hindering factor in establishing test methods for as-
sprayed TBCs: non-linearity & hysteresis in the constitutive relations 

- Flexure testing (uniaxial and biaxial) maybe inappropriate due to
difference in modulus between tension and compression

- Poisson’s ratio not well-defined
- Impulse excitation technique maybe inappropriate

• Pure tension and compression testing – impose less problems

• Fracture toughness testing – maybe OK in view of low fracture loads

• Fractography

• Properties change with sintering/service conditions
- requires to evaluate based on sinter/service conditions

Summary

• Strength:
tension: 10-15 MPa; flexure: 30-40 MPa; compression: 300 MPa
Weibull modulus: 5-15

• Fatigue/Slow Crack Growth: 
SCG parameter n>100

• Fracture Toughness: 
KIc=1.0 MPa√√√√m up to 1316 oC
KIIc=0.7 MPa√√√√m up to 1316 oC

• Deformation:
nonlinear elasticity with hysteresis;
imposes problems in continuum approach (test standards)

• Sintering:
significant influence - a changer of most properties!
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Strength, fracture toughness and fatigue behavior of free-standing thick thermal barrier coatings of plasma-sprayed
ZrO2-8wt % Y2O3 were determined at ambient and elevated temperatures in an attempt to establish a database for
design. Strength, in conjunction with deformation (stress-strain behavior), was evaluated in tension (uniaxial and
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also was presented with a special regard to material’s unique constitutive relations.






